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trading in new securities, about which an “insider” has private information, might
cause a collapse of prevailing security markets. Roughly, securities that allow the
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1. INTRODUCTION

In 1970, Akerlof [1] convincingly argued that the presence of asym-
metric information can profoundly affect equilibrium trading patterns. In
the context of financial markets with an informed trader possessing “inside
information,” Akerlof’s ideas are pursued by the consideration of so-called

* We wish to thank Gur Huberman and Arthur Robson for helpful discussions, and Martin
Hellwig whose comments ultimately led us to take a signalling game approach. We also thank
S. Viswanathan for his comments at the mectings of the Western Finance Association.

* Support from the Social Sciences and Humanities Research Council of Canada is grate-
fully acknowledged. Some of this research was carried out while this author was visiting the
Department of Economics at the University of Wisconsin, Madison.

136

0022-0531,95 $6.00

Copyright ' 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.



DESTRUCTIVE INTERFERENCE 137

rational expectations equilibria. As we are now well aware, under rational
expectations the presence of an informed trader on one side of a market
can preclude the possibility of any trade taking place simply because those
on the other side know that they will be taken advantage of.

Holding to the rational expectations hypothesis, and within the context
of a multi-security model of financial markets, the present paper provides
conditions under which a given collection of securities cannot
simultaneously trade due to the presence of insider trading. In particular,
if the insider’s trading activity is due largely to his possession of private
information on future security values, then no trade occurs. The analysis
provides a complete characterization of precisely when the insider’s risk
and information characteristics render trade impossible. Moreover, this
characterization provides results on the effect of attempting to introduce
new securities into the market.

There are by now several papers examining the question of market
breakdowns in a single security setting, including Glosten [127], Leach and
Madhavan [20], Bhattacharya and Spiegel [6], and Hellwig [15].
However, the present setting allows for any number of securities, and so it
is capable of addressing issues that cannot even be formulated in a single
security environment. For instance, suppose the market is in equilibrium
and a new security is introduced. What impact might this have? In par-
ticular, can an equilibrium be sustained in which this larger collection of
securities simuitaneously trade? Alternatively, suppose that a given collec-
tion of securities cannot simultaneously trade in equilibrium. (The single-
security literature has already demonstrated that this can be the case.) Can
an equilibrium with trade be restored by adding an appropriately designed
new security?

Our results provide a negative answer to the second question
(Theorem 5.2). There is no security which, when added to the market, can
restore equilibrium. Regarding the first question, we find that adding a
security to a market that is in equilibrium may lead to a collection of
securities that is incompatible with equilibrium. Consequently, the only
way to restore equilibrium after such an addition is to close the market in
the new security or to close some other security market(s) (remember,
opening new security markets cannot help). Since our model does not
include any dynamics, we cannot formally address which of these closures
will take place, only that some closure must take place. Generally, when-
ever a set of security markets cannot open simultaneously, we shall say that
they destructively interfere with one another.

Loosely, destructive interference occurs whenever payoffs from the set of
currently trading securities are highly correlated. This leads to a number of
practical implications. For instance, our results suggest that the underlying
correlation among the unknown factors influencing the returns of an
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individual project may determine whether an owner-manager must
ultimately issue on security for a conglomerate or whether he can issue
individual securities for the different units. Similarly, derivative securities,
whose payoffs are typically highly correlated with the payoff of the
primitive assets, may well eliminate the market for the primitive asset if the
initial amount of insider trading in the primitive asset is sufficiently large.
Stretching the model somewhat, this may explain why deep in the money
options do not trade. Deep in the money options have payoffs that are
almost perfectly correlated with the underlying stock. Although our
assumptions do not precisely fit this case (our security payoffs are linear)
our results suggest that in equilibrium either the option or the stock can
trade but not both.

As in Admati [2], where the model of Heliwig [14] is generalized to
include multiple securities, we find that Giffen securities can arise.' This
contrasts with the results of Caballe and Krishnan [7] in their generaliza-
tion of Kyle [197]. Our model differs significantly from Kyle’s [19] and
Caballe and Krishnan’s [7] in an important respect. As in the papers of
Bray [ 5], Ausubel [3], Gale and Hellwig [11], Glosten [12], Laffont and
Maskin [21], and Bhattacharya and Spiegel [6], noise traders are absent
from our model. Nonetheless, prices remain only partially revealing
because our insider has both a hedging and an informational motive for
trade. The absence of noise traders is crucial and it is precisely why we do
obtain Akerlof-like market failures in the presence of asymmetric informa-
tion. Because all of our agents are rational, those agents without inside
information will rationally choose not to trade when the insider’s willing-
ness to trade is largely due to his private information. In models involving
noise traders however, the market can never collapse to a no trade equi-
librium regardless of the insider’s informational advantage simply because
noise traders are assumed to trade in spite of any losses that they might
incur as a result.

To date, most of the literature on rational expectations equilibria in
financial markets with asymmetric information has restricted attention to
the linear equilibrium. This has largely been for reasons of tractability.
Since our results often focus on the absence of equilibria involving trade in
all (or some) securities, we are compelled to broaden the search for equi-
libria involving trade in all (or some) securities, we are compelled to
broaden the search for equilibria beyond those that are linear. As in the
analyses of Glosten [12], Ausubel [3], Laffont and Maskin [21], and

"' Qur analysis also relates to that of Chowdhry and Nanda [9]. They present a Kyle-type
model in which a single security trades within different exchanges. The key feature of their
model is that market makers do not observe prices on competing exchanges. Here there are
several different securities which trade in a single market and their prices are common
knowledge.
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Bhattacharya and Spiegel [6], we do this. In fact, we go much further. We
impose no restrictions on the equilibrium price schedule. Our only require-
ment is that in equilibrium the outsider’s beliefs about the insider’s trading
motives satisfy Cho and Krep’s [8] D1 criterion.” To our knowledge this
is the first attempt in the normal-exponential noisy rational expectations
literature to do away with continuity restrictions on the equilibrium price
schedule.

Remarkably, the analysis shows that the linear equilibria are, in a sense,
focal. Fixing a collection of securities to be traded, the existence of a linear
equilibrium involving trade in these securities is both necessary and suf-
ficient for the existence of any equilibrium at all involving trade in these
securities.

The paper proceeds as follows. The model is described in Section 2. In
Section 3, we define an equilibrium in which all potentially tradable
securities are in fact tradable. Section 4 is devoted to the existence of such
an equilibrium. Subsection 4.1 provides a characterization for the existence
of a linear such equilibrium, and Subsection 4.2 shows that an equilibrium
in which all potentially tradable securities are tradable exists if and only
if such a linear equilibrium exists. Section 5 considers the more general
question of the existence of equilibria in which only some subset of the
potentially tradable securities is tradable. Section 6 concludes.

2. THE MODEL

The basic setting is an » security version of the single security model
found in Bhattacharya and Spiegel [6]. Traders are divided into two
groups, cach having negative exponential utility. The first consists of a
single large trader (the “insider”) who has private information about the
securities within the economy. His strictly positive risk aversion parameter
is denoted by 6. A continuum of small traders (“outsiders”), indexed by
x2€ [0, 1], make up the second group. Their distribution over the interval
[0, 1] is given by the atomless measure v, which we normalize so that
v([0, 17)= 1. Each outsider has a strictly positive risk aversion parameter, ¢.

There are n potentially tradable securities and one (always tradable)
risk-free bond. Among the collection of potentially tradable securities only
some subset, to be determined in equilibrium, can actually trade. Those
that remain untraded may, for instance, be interpreted as securities not
presently in the market since they have not yet been “designed,” or simply

*Since stability (Kohlberg and Mertens [18]), universal divinity {(Banks and Sobel [47)

and Cho-Krep’s never a weak best response criteria (Cho and Kreps [8]) all imply the D1
criterion, any of these refinements are compatible with our results.

642 65 1-10
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as securities that are not yet publicly traded. Here we do not concern our-
selves with the incentives involved in either designing new securities or in
some other way introducing new securities into the market. Rather, we
concentrate primarily on whether a given collection of securities, whatever
their origin, can remain tradable as a group in equilibrium.

Quantities of the »n potentially tradable sccurities are denoted by
S, .., S, and quantities of the riskless bond {or debt) by D. The endow-
ment of outsider xe [0, 1] is (D(«), S,(«), ... S,{x)) and it is assumed
that D:[0,1]—R is Borel measurable as is S;:[0,1]— R for each
i=0,1, .., n* Moreover, we normalize the supply of every security and the
bond to unity so that the insider’s endowment of the ith security is §,,
where S,=1— [} S,() dv, and his bond endowment is D=1— [} D(x) dv.
In addition, the insider is randomly endowed with a set of # untradable
assets. These n random quantities are denoted by W,, .., W, . This collec-
tion, which is always untradable, may include items such as human capital,
and real estate. Note that it is not necessary to think of the insider as hold-
ing n one-dimensional untradable assets. He may instead hold a smaller
number of untraded multi-dimensional ones. The realized quantities of the
insider’s untraded assets form part of his private information. In the model,
outsiders know only that W=(W,, .., W ) is normally distributed with
mean zero and covariance matrix X',

Let us fix, for the moment, a subset of the set of potentially tradable
securities. Suppose these securities’ indices are {1, 2, .., k}, and that they
constitute the set of tradable securities. All agents must therefore retain
their endowed amounts of the untradable securities k + 1 through n. When
an agent wishes to trade a (tradable) security, he must do so through a
“Walrasian market-maker” who, in equilibrium, quotes market-clearing
prices.*

Formally, the market-maker is simply a mapping from demands made
by the insider to security prices. That is, for every vector of security
demands, S, submitted by the insider, the market-maker (price schedule)
provides prices P(S') = (P (S"), .., P.(S")), for the k tradable securities.
The price and payoff of the bond is normalized to unity. It is common
knowledge that the future value of the ith security is given by g€, +n, for
i=1,2,.,n, where (g,..¢€,) and (n,.., n,)} are independent random

* Throughout the paper, we maintain the following convention when the possibility of con-
fusion might arise. Boldface refers to a function (or random variable), while normal face refers
to the value taken on by the function (or random variable).

* The status of our Walrasian market-maker is identical to that in traditional models of
general competitive equilibrium. She is not an agent within the model, but merely a con-
venient expository device. Both Glosten and Milgrom [13] and Kyle {19] also employ a
market-maker in this same spirit. Indeed, the market-efficiency condition they impose on their
equilibrium price schedule can be derived from our market-clearing condition by setting ¢ = 0.
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vectors normally distributed with means zero and covariance matrices 2,
and X, respectively. The mean zero assumptions serve only to reduce the
notational burden. To simplify the analysis, we assume that the future
value of the insider’s ith untraded asset W, is also ¢, +n, for i=1,2, .., n

Note that the insider receives private information on all # securities, even
if not all are tradable. This allows us to investigate the effect of introducing
new securities into the market about which the insider has private informa-
tion, without discussing incentives to acquire private information which
might well be related to those securities that are actually tradable. The
insider’s private information is purely exogenous, and does not change with
the number or make-up of tradable securities.

Given the set of tradable securities {1, 2, .., k} and the market-maker’s
price schedule P: R* — R*, both of which are common knowledge among
all traders, the order of events is as follows: First, nature chooses the values
of the random vectors € = (g, .., &,), n=(N, -, N,,), and W=(W , . W, )
independently according to their distributions. Second, the insider is
informed of both W and ¢, but not 5. The insider then submits a demand
for securities 1-k to the market-maker. Third, the market-maker consults
the price schedule and fixes the price at which all tradable securities trade
(and hence determines the insider’s bond demand through his budget con-
straint). Fourth, and finally, outsiders are informed of these prices (but not
of W, g, or n) and thereafter submit their demands for tradable securities
(their bond demands again being determined by their budget constraints).

Note that one can interpret the random vectors 1 and € as economy-
wide uncertainty and outsider-specific uncertainty about the future value of
securities 1, 2, .., n. We assume throughout that the variance-covariance
matrices 2., 2, and 2, are of full rank and therefore positive definite.

The description of an equilibrium shall provide both the collection of
tradable securities and the market-maker’s price-schedule. If it were not for
the insider’s private information about the security payoffs, any subset of
the securities could trade in some equilibrium. As we shall see, however, the
insider’s presence profoundly affects the possible equilibrium market
structures. Under certain conditions some securities simply cannot
simultaneously trade.’

Since we de not rule it out, there is always a trivial equilibrium in which
none of the potentially tradable securities are actually tradable. In this
equilibrium all traders simply consume their endowments, which is optimal
since there is no possibility of trade. Hence, the existence of an equilibrium,

* This is in rather sharp contrast to the purely competitive case in which (fully revealing)
equilibria generically do exist (see, for instance, Duflic and Shafer [10]). Indeed, when
nominal assets are present in a competitive setting there are a plethora of non-fully revealing
equilibria as well (see Mischel ef al. [22] and Rahi [23]).
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since the set of tradable securities is part of its description, never presents
a difficulty. Our main objective is to determine, for any subset of the set of
potentially tradable securities, precisely when the insider’s information
allows these to be tradable in some equilibrium. Thus, the analysis below
proceeds by fixing a collection of securities, deeming precisely these to be
tradable, and then determines whether or not the market-maker can set
prices for these securities so that markets clear. We begin by supposing that
all potentially tradable securities are tradable.

3. EQUILIBRIUM

Throughout this section, as well as Section 4, we shall suppose that all
securities are tradable. The analysis when a strict subset of the set of poten-
tially tradable securities is tradable 1s virtually identical and is presented in
Section 5. So, for the time being, the market structure is constrained so that
all n securities are tradable. We wish to know when this market structure
is compatible with equilibrium.

Given any market-maker price schedule P: R” —» R”, the insider will, for
every realization W of W and ¢ of & demand a vector of securities
S, 8, .., 5, and an amount of the bond which maximizes his expected
utility subject to his budget constraint. That is (making use of the exponen-
tial utility assumption), the insider chooses (D', $')e R"*! to maximize

Vi(DY, ST W,e)=(S'+ W) e+ D' —0.56(S"+ W)T Z(S"+ W) (1)

subject to
[S"-ST"P(S"y+D'—-D=0. (2)

Substituting (2) into (1) renders this equivalent to choosing SeR" to
maximize
Vst o)=(SHT1—(ST=85)" P(SH—0.56(SHT 2, S, (3)

where =202, W.

As exhibited by (3), the insider’s preferences depend only on ¢ and W in
so far as t is affected. Consequently, for each ¢ and W, the variable T com-
pletely determines the insider’s preferences and we shall therefore refer to
7 as the insider’s “type.” The random variable generating the insider’s type
will be denoted by t and is defined by t=¢— 6%, W. It now becomes
natural to model the entire scenario as a signalling game. Each insider
(sender) type demands some quantity of each security. Given the price
schedule, this determines each security’s price and these prices are the
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signals which ultimately reach the outsiders (receivers). The outsiders use
the prices (signals) to make inferences about the insiders’s type which leads
to inferences about ¢, and the future value of the securities’ payoffs. The
outsiders then place their demands for each security. In equilibrium, all
security markets must clear.

Consequently, a strategy for the insider is a mapping S": R” — R" taking
values of his type, 1, into a demand for each of the n securities, while a
strategy for each outsider xe [0, 1] is a mapping S*: R" — R" taking the
observed prices into a demand for each security. Note that the present
model i1s not a game in the strict sense because the price schedule, which
in equilibrium must equate demand and supply in each security market,
although endogenous, is not chosen by any maximizing agent within the
model. Thus, we continue to employ the standard general equilibrium view
of prices, while attempting to exploit as much as possible the insights
available from the signalling-game literature.

In many signalling models the need arises to discipline the inferences
made by the receiver upon the receipt of a signal that is unsent in equi-
librium.® The present model is no exception. Indeed, we shall discipline the
outsider’s inferences in a by now rather standard fashion. They must satisfy
Cho and Kreps’ [8] DI criterion.

We proceed informally to outline the effect of the D1 criterion in our
context. First, note that in equilibrium, the price schedule must be one to
one. Otherwise, for two distinct security demands of the insider, the
security demands of the outsiders will be the same (the latter can depend
only on the observed price vector). Then, however, for one of these
demands, the securities market will not clear.

Suppose now that the outsiders observe the vector of security prices, P,,
but that P, can never arise if the insider follows his equilibrium strategy.
Because the equilibrium price schedule is one to one, the outsiders can
invert it to determine the out-of-equilibrium demand submitted by the
insider. Call this demand S,. Since no insider-type demands S, in equi-
librium, the outsiders cannot emply Bayes’ rule to form an inference about
which insider-type(s) might have submitted such a demand. The DI
criterion suggests a procedure for disciplinning the outsiders’ inferences.
The idea is to insist that the outsiders provide a “reasonable” explanation
for the deviation. Indeed, the outsiders are asked to take the view that the
insider is, by deviating, attempting to raise his payoff above what he would
obtain in equilibrium.

Now if the insider submits the out-of-equilibrium demand, S,, in order
to raise his payoff above what he could obtain in equilibrium, then he must
believe that the market-maker will respond with a more favorable price

¢ Inferences resulting from equilibrium signals are disciplined by Bayes’ rule.
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than that dictated by the equilibrium price schedule for S,. Let this then
serve as the outsiders’ explanation for the insider’s deviation.

The above explanation allows the outsiders to isolate those insider-types
who are most likely to have deviated. Indeed, this is the strength of the D1
criterion and it works as follows. Suppose a subset, T, of insider-types
possesses the following property:

Whenever a potential price response to S, provides some
insider-type not in 7 with an incentive (perhaps only
weak) to deviate to S, the same price response provides
every member of T with a strict incentive to deviate to S,.”

Under these circumstances we will call T a prime suspect subset of insider
types for S, (in the sense that the types in T are deemed most likely to have
deviated). The DI criterion restricts the outsiders’ beliefs to be concen-
trated on the set 7.®* We now formally describe an equilibrium.

An equilibrium in securities {1,2,..n} is a tuple (P(-),S"(-),
(S*(-)seo.1y) where P:R"—>R", S:R"->R", S R"—>R", satisfy for
every insider type t=ge—0X, W, every outsider xe[0, 1], and every
S=8'(1):

(i) $ maximizes the insider’s expected utility given his type t and
the price schedule P(-),

(i) S*(P(S)) maximizes outsider o’s expected utility given the price
schedule P(-), the insider’s strategy S'(-), and «’s Bayes rule induced beliefs
about the insider’s type t, and therefore ¢,

(ii1) The outsider’s beliefs satisfy Cho and Kreps’ D1 criterion. That
is, if $#8'(t") for all v/, and T is a prime suspect subset of insider types
for S, then J(P(S))<= T, where J(P) denotes the support of the outsiders’
beliefs about the insider’s type, conditional upon observing the price
vector P.*

(iv) S'(-)is Borel measurable as is S*(P(S)) in a, for every S,

7 Strictly speaking, this is not precisely the property which is associated with the DI
criterion. The difference lies in our use of every rather than some particular. Consequently, the
difference renders our ultimate restriction even more compelling. In addition, our restriction
is then formally weaker than the standard D1 criterion. Although this formal distinction is
present, we have nonetheless chosen to use the same terminology. Of course, all our results
hold a fortiori if one employs the standard D1 criterion.

¥ The D1 criterion alse requires that every member of 7 can, in fact, by deviating to S, be
made at least as well of by some price response of the market-maker as they would have been
in equilibrium. However, in our model this is almost always trivially the case since for any
Sy # S, any insider-type can be made arbitrarily well off by an appropriately chosen price. The
case in which Sy =S does not need to be considered for our purposes.

® The support of a probability measure is the smallest closed subset assigned probability 1.



DESTRUCTIVE INTERFERENCE 145

(v) jé S*(P(S))dv=1—3S, for every S, where 1 is an nx 1 vector
of I's.

Conditions (i) and (ii) ensure that in equilibrium the insider and the
outsiders are making utility maximizing decisions and that the outsiders,
when possible, employ Bayes’s rule to make inferences about the insider’s
private information. Condition (iii) disciplines the outsider’s beliefs to
conform to the D1 criterion. Condition (iv) is simply a regularity require-
ment. Finally, condition (v) asks that for any security demand made
by the insider, the equilibrium prices set by the market-maker clear all
markets.

4. EXISTENCE OF AN EQUILIBRIUM

4.1. The Linear Equilibrium

As we shall later see, the existence of any equilibrium in securities
1,2, ..., n} rests on the existence of an equilibrium involving a linear price
schedule or simply, a linear equilibrium. We therefore consider the condi-
tions leading to an equilibrium in which P(S')=4S"'+ b for some nxn
matrix 4 and n x 1 vector b. Recall from the discussion in the previous sec-
tion that P(-) must be one to one. Consequently, 4 must be nonsingular.
We begin by deriving the insider’s optimal strategy. Since the maximization
of (3) is unconstrained, we obtain the following first-order condition for
insider-type t by differentiating with respect to S

1—AS'—h—AT(S'-8)-6X,S'=0. (4)

In light of this, consider the information about £ that can be obtained in
equilibrium by an outsider upon observing the equilibrium price vector.
Since A is invertible, the observed price vector can be used to determine the
insider’s demand, S'. The outsiders can then solve (4) for the insider’s type
7, so that the realized values of € and W must satisfy t=¢— 6%, W. Since
the insider’s strategy depends only upon his type 7, the outsiders cannot
refine their information about € any further. Consequently, because € and
W are independently and normally distributed with zero means and
covariance matrices X, and 2, respectively, a standard application of
Bayesian updating yields that the outsiders’ resulting conditional distribu-
tion of & is normal with mean Ur and covariance matrix 2, =
[2,'+0°2,2,Z,) '], where U=2,[0°2,2,%2, +2,] "

Consider now an outsider xe [0, 1] who has observed the equilibrium
prices and deduced the insider’s type z. Since his utility is exponential, he



146 BHATTACHARYA, RENY, AND SPIEGEL

chooses a vector of securities S* and an amount of the bond D* to maxi-
mize (after updating his beliefs about ¢ as discribed above)
(S*)T Ut + D*—0.54(S*)T 2, 8*
subject to the budget constraint
(S*— ST (AS'+b) +(D*— D*)=0,

where Ut is the conditional mean of the future value of the risky securities,
and Xy=21, +2X, is the corresponding conditional covariance matrix.
However, this is equivalent to choosing S* to maximize

Vo(S$*)=(5*)T Ut —(S*— 8T (A4S + ) —0.5¢(5%)T X, S~
The relevant first-order condition is
Ut —AS'—b—¢2,5*=0. (5)

Therefore, if (P(-),S'(-), S*(‘),c(0.17) constitutes a linear equilibrium,
we must have, using (4), (5), and the market-clearing condition (v), for
every T,

1~ AS (1) —b— AT(S'(t) — ) — 6Z,8'(1) =0, (6)
Ut — AS'(z) - b—$Z,S%S" (1)) = 0, (7)
fl S*(S'(z)) dv=1—S'(1), (8)
0

where we have written the outsider’s strategy S*: R” — R” as a function of
the insider’s demand rather than the observed prive vector. This is without
loss since any equilibrium price schedule must be one to one. Egs. (6), (7),
and (8) are the insider’s first-order conditions, the outsiders’ first-order
conditions, and the market-clearing constraint respectively. Integrating (7)
over a, using v, and combining the result with (6) and (8) yields

—~ASY(1)=b—AT(S'(1)-8)—-6Z,S' (1)
=U [ 48 (r)—b—¢Zo(1-SY(1))], 9)
for every z.
At this point it is helpful to simplify the notation by dropping the
superscript “I” on the insider’s strategy and denote it simply as S(r)=

(Sy(1), .-, S,(1)). This should cause no confusion as we no longer require an
explicit reference to the outsiders’ strategies. Thus, rewrite (9) as

—AS—b—AN(S—-8)—0Z,S=U "[-AS—b—¢Z,(1-5)], (10)

for every T and §=S(1).
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From the insider’s first-order condition (6), for every t the insider’s
optimal demand vector, S(t), must satisfy

(A+A"+0%,)S(t) =1+ ATS—b. (11)

Since by varying 1, the range of the right-hand side of (11) is R”, the same
must be true of the left-hand side. We conclude that in a linear equilibrium
A+ A" + 6%, is nonsingular and that for every 1

S(t)=(A+AT+6X,) ' (1+A4"S—b). (12)

Thus, by (12), every S is chosen in a linear equilibrium by some insider
type, and so (10) must hold for every S. However, now note that the left-
hand side of (10} differs only by 7 from the derivative of the insider’s objec-
tive with respect to ST. We therefore obtain the necessary second-order
condition by differentiating (10) with respect to S (which is valid since (10)
holds for every S). By doing so, we obtain

FViS()]7) .
3505t - —[4+A47+62,]

=U"'[¢Zy—A], (13)

where the first equality follows from the definition of ¥\(-) and the second
follows from (10).

A necessary condition for P(-) and S(-) to form part of an equilibrium
is that &°V,(S(t)|7)/éS 65T be negative semidefinite for every 1. Indeed,
since 4+ AT+ 0%, must be nonsingular, 4+ A"+ 0%, must then be
positive definite. Moreover, this condition, in addition to 4 being non-
singular and satisfying (13), is also sufficient to guarantee the existence of
an appropriate b so that the resulting P(-) and S(-) form part of a linear
equilibrium.’® Indeed, under these conditions the insider’s optimization
problem is strictly concave. Since the outsiders’ problems are always
strictly concave, solutions are characterized by their respective first-order
conditions which (10) ensures are satisfied. In addition, (10) guarantees
that markets clear. Lastly, because every S is chosen in a linear equilibrium
by some insider-type, the DI criterion is vacuously satisfied.

Thus, a necessary and sufficient condition for the existence of an equi-
librium in securities {1, 2,..,n} having a linear price schedule P(S)=
AS + b is that the solution, 4, to the equation

A+AT+02W=U‘1(A—¢Z(,) (14)
19 The appropriate value of b is (/— L' ~") "' (4'S+ ¢U 'X,1). Since, by Lemmas A.1 and

A2 of Appendix, A, U is diagonalizable with eigenvalues between 0 and 1, and nonsingular,
(I—U ") 'is well-defined.
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be nonsingular, and that the matrix defined by both sides of (14) be
positive definite. Under what conditions on the parameters 0, 2, 2y, 2,
and ¢ will these requirements be met? The answer lies in the induced eigen-
values of U/ and it is expressed in the following lemma.!!

LEMMA 4.1.  Except possibly for a closed set of parameter values having
Lebesgue measure zero, there is a solution, A, to (14) which is nonsingular
and which renders both sides of (14) positive definite, if and only if every
eigenvalue of U is less than 1/2.

Proof. See Appendix A.

Consequently, we have proven the following theorem which characterizes
the existence of a linear equilibrium in securities {1, .., #}.

THEOREM 4.2.  Except possibly for a closed set of parameter values (6, ¢,
2, 2w, 2.) having Lebesgue measure zero, there is a linear equilibrium in

securities {1,2, .., n} if and only if every eigenvalue of the outsider’s update
matrix U is less than 1/2.

Remark. Theorem 4.2 has content since the set of parameter values
for which the eigenvalues of U are all less than 1/2 is open and non-
empty.

The intuition behind Theorem 4.2 is best captured by constructing
appropriate measures of the insider’s motives for trade. An equilibrium will
fail to exist when the insider’s motive for trade is based largely on his desire
to exploit his private information rather than his desire to hedge against
the uncertainty associated with the future value of his untradable assets
W,, .., W_. Let us consider first the case in which there is but a single
potentially tradable security in the economy which is, in fact, tradable. Its
future price is then n+¢. Let o}, o7, and o denote the variances of &, 0,
and w, respectively. In equilibrium, the insider chooses his demand for the
single security based on the value of t=g—0a]w. Morcover, it is the
relative sizes of £ and 0o, w that determine whether the insider’s motive for

" Given any nxn, symmetric, positive definite matrix, one can perturb the n(n+ 1)/2
elements along the diagonal and above in an arbitrary fashion while adjusting the elements
below the diagonal to retain symmetry. If such a perturbation is slight enough, then the result-
ing symmetric matrix will also be positive definite. Consequently, the set of n x n, symmetric
positive definite matrices is an open, nonempty, convex cone in R"'" ' '*2, Likewise, the set of
parameter values ¢, 0, 2', 2y, and X, that are feasible in our model constitutes an open,
nonempty, convex cone in R+ ¥+ V2 Accordingly, statements about openness, closedness,
or Lebesgue measurc are all with reference to the usual topology in [2+ 3n(n + 1)/2]-dimen-
sional Euclidean space.
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trade is an informational or a hedging one. Now, from an outsider’s point
of view, both ¢ and HJf,w are unknown. However, outsiders can deduce the
value of t=¢— 6o w, in equilibrium. Now, given t =1 the expected values
of ¢ and Oo;w, are [o}/(6}+0%0}02)] 1 and [0%c 0. /(cl+ 6%} 62)] T,
respectively. Thus, from an outsider’s point of view the insider’s motive for
trade is relatively informational when the absolute value of the former
exceeds that of the latter. However, this is equivalent to the condition o2 >
0ojo,.

Suppose now that instead of their being but one security, there is a single
mutual fund, consisting of fixed proportions of securities S|, ..., S, given by
the # x 1 vector x, and that this mutual fund is the only potentially tradable
“security” and is in fact actually tradable. The insider chooses his demand
for this mutual fund based on the value of x"t=x"g —x"6X, W. Carrying
out precisely the same analysis as above yields that from an outsider’s
point of view, the insider’s motive for trade in this mutual fund will be
relatively informational when the absolute value of the conditional expecta-
tion of x'e exceeds that of x70X, W. However, this is equivalent to the
condition x"X x> xT0’%, X, X .

Finally, consider the multi-security case. If there is any mutual fund, x,
such that the insider’s motive for trade in that mutual fund is relatively
informational (ie., x"2, x> x"0°Z, £, X, x) then an equilibrium will fail to
exist since the insider and outsiders will wish to take the same side of any
trade in this fund. Hence, there is no equilibrium when some mutual fund,
x, satisfies x'2 x>xT6°%, X, %, x, or equivalently when the maximum
value, choosing x not zero, of x'Z x/x"(X, + 0?2, X, % ) x exceeds 1/2.
However, this is, by Rayleigh’s principle (see Strang [ 25, pp. 253-254] and
the proof of Theorem 5.2 below), equivalent to U=2X (X, + 912,,2,,,-2,,)*‘
having an eigenvalue greater than 1/2, which is the relevant condition
expressed in Theorem 4.2.

Under what conditions will U have an eigenvalue exceeding 1/2?7 The
first is when 2, is nearly singular. In this case, there is a mutual fund con-
sisting of the insider’s untraded securities whose distribution is nearly
degenerate. The outsiders can then obtain a very reliable estimate of the
insider’s private information about the future value of the same mutual
fund of tradable securities. However, if all agents have the same informa-
tion about the fund’s future value, then all will wish to take the same side
of any trade. Thus, to obtain an equilibrium in securities {1,..,n}, X,
must be some distance from a singular matrix.

There are two other occasions when U has an eigenvalue exceeding 1/2.
First, when the insider is nearly risk neutral, and second when there is
relatively little economy-wide uncertainty about the future value of the
securities. When the insider is nearly risk neutral, he has little incentive to
consider hedging tactics. Consequently, his motive for trade is almost
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entirely informational. Alternatively, when there is enough correlation
between the future value of securities in that component representing
economy-wide uncertainty (ie., when 2, is nearly singular), the insider can
put together a mutual fund of tradable securities whose future value is
almost certain. Thus, his demand for this mutual fund will be largely based
on his private information, since the same mutual fund consisting of his
untradable securities, W, .., W,, then also has an almost certain future
value.

4.2. Existence of Nonlinear Equilibria

This section establishes that precisely the same condition characterizing
the existence of a linear equilibrium characterizes the existence of any equi-
librium at all in securities {1, 2, ..., n}. Those readers primarily interested in
applications of the eigenvalue condition for destructive interference may
wish to skip this section and proceed immediately to Theorem 4.5 below.

Throughout this section, we maintain the hypothesis that the price
schedule P(-) is part of an equilibrium in securities {1, 2, .., n}. We begin
with some notation. Given the equilibrium price schedule, P(-), define
F(S)=(S—=5)"P(5)+ 05082, S for every S. Consequently, insider-type
7 has an equilibrium utility of

V(t)=max STt — F(S)."*
SeR”

In this form, V{(-) is recognized as the conjugate of F(-)."* As will be
seen, the fact that one can express the insider’s utility in this form, allows
a good deal of convex analysis to be fruitfully applied. Indeed, it is helpful
to introduce as well the conjugate of V{(-), namely,

f1S)= max STt —V(1),
for all S.

Thus, f(-) is the conjugate of the conjugate of F(-). Geometrically, f(-)
is the greatest, in terms of pointwise values, convex function below F{(-)
(see Fact (b) in Appendix B)."* Consequently, one can equivalently define
V(-) by replacing F(-) in its original definition above by f(-) (see Fact (c)
in Appendix B). That is,

V(z)zm?x STr— F(S)zm?x STr—/£(S)

2 Note that because P(-) is an equilibrium price schedule, this maximization problem is
well defined for every t.

'3 See, for instance, Rockalfellar [24, pp. 102-104]. However, note that F(-) need not, at
this point, be convex.

'* Appendix B contains several facts from convex analysis that we refer to throughout this
part of the text. These facts are labeled (a)-(d).
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for every 7. However, the maximizers of the two problems need not be the
same. With this in mind, let M(t)={S|STt— F(S)= V(z)} and m(r)=
{S| STt~ f(S)=V(1)}, and note that both sets of maximizers are non-
empty for every 1, since P(-) is an equilibrium price schedule.

For g: R" — R, a convex function, let dg(x) denote the nonempty, com-
pact, and convex set of subgradients of g at x. That is

dg(x)={qeR" | g(y)=g(x)+¢q"(y—x) forall pe R"}.

When dg(x)= {q]} is a singleton, we will sometimes simply write dg(x) = g.
If g is differentiable at x we will denote its derivative there by Vg(x). Of
course ¢g(x) is a singleton if and only if ég(x)=Vg(x) (see Rockafellar
[24, Thm. 25.1]). Finally, for any convex subset 4 of R", denote by ri A,
the relative interior of A.

Recall that 3(P) denotes the support of the outsiders’ beliefs about the
insider’s type conditional on having observed the price vector P. Since the
equilibrium price schedule P(-) must be one to one, observing the price is
equivalent to observing the insider’s demand §. For simplicity only, we
shall proceed from now on as if the outsiders actually observe the insider’s
demand S, rather than only the resulting price P. Again, in any equi-
librium, this is without any loss. Consequently, 3(S) shall denote the
support of the outsiders’ beliefs about the insider’s type conditional upon
having observed the insider’s demand S.

The strength of the D1 criterion lies in the restrictions it places upon the
outsiders’ beliefs about the insider’s type subsequent to an out-of-equi-
librium demand. Of course, Bayes’ rule is employed subsequent to equi-
librium demands. The following theorem establishes that in equilibrium
Bayes’ rule correctly restricts the outsiders’ beliefs about the insider’s type
to the subgradient of f(-) evaluated at that insider-type’s equilibrium
demand. Moreover, it establishes that the D1 criterion leads to the same
restriction on beliefs subsequent to out-of-equilibrium demands. It should
be noted that this is the only use that we shall make of the criterion.

PROPOSITION 4.3.  In any equilibrium, 3(S)< df(S) for all S.

Proof. Fix an equilibrium. Insider-type 7 chooses S to maximize
STt — F(S). Consequently, if S, is an equilibrium demand made by insider-
type 1o, then S;e M(z,). However, together, Facts (c)(i) and (d)(ii) in
Appendix B then imply that 7, e d/(S,). Thus, the only insider-types who in
equilibrium demand S, are members of ¢f(S,).

Next, consider a demand S, that is not made by any insider-type in
equilibrium. In addition, suppose that there is a potential price response
making some insider-type t¢ df(S,) at least as well off as his equilibrium
demand would have. We claim then that the same price response makes
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every insider-type in 4f(S,) strictly better off. If this is true, then 9f(S;)
constitutes a prime suspect subset for S, and therefore the D1 criterion
implies that the outsiders’ beliefs about the type of insider who demanded
Sy must have support in &f(S,).

To prove the claim, we need show that if for some ¢ df(S,) and some
price vector P, we have St —(S,—38)" P, —0.50ST2S, > V(t), then we
also have S)1,—(So—S)T P,—0.50512S,> V(z,) for every t,€df(S,).
However, this is equivalent to showing that for any t ¢ df(S,), if Sgr—y >
V(t) then Slt,—y > V(1,) for all 1y df(S,). To see that this is indeed
the case, note that by Fact (d)(ii) of Appendix B, ¥(t)> Sgt—f(S,)
for t¢df(S,) and V(ty)=SJTte—f(S,) for t,edf(S,). Consequently, if
Sgt—y = V(t), then y < f(S,) so that Sit,—y > V(1y). Q.E.D.

Remark. Since f(-) is, by Fact (b) of Appendix B, convex, it is differen-
tiable almost everywhere (Rockafellar [24, Thm. 25.5]). Consequently,
Proposition 4.3 implies that conditional on almost every demand, S, of the
insider, the outsiders’ beliefs are a point mass on Vf(S).

Despite Proposition 4.3, we still may know very little about the out-
siders’ beliefs conditional on equilibrium demands made by the insider. For
instance, in the one security case, if /() fails to be differentiable at S, then
S, 18 chosen by an open set of insider-types. Indeed, if f(S) is piecewise
linear yet everywhere above the function g(S)=S§? say, then f has
infinitely many kinks and almost every insider-type maximizes uniquely by
choosing an amount of the single security at which f is kinked. Conse-
quently, almost all of the equilibrium action might involve points at which
/ fails to be differentiable whereas Proposition 4.3 provides detailed infor-
mation only when [ is differentiable.

It is therefore necessary to further investigate the nature of the insider’s
equilibrium demands, especially those that might be associated with kinks
(non-differentiabilities) in f(-). With this in mind, calli a demand S by the
insider a peak if for some insider-type, 7, m(z) = {S}. Consequently, if S is
a peak, then S is the unique maximizing demand for some insider-type.'*

As it turns out, in any equilibrium, every S is a peak.'® Consequently,
every S is demanded by some insider-type; there are no out-of-equilibrium
demands. This is stated as part of the following theorem.

PROPOSITION 4.4. [In any equilibrium every S is a peak, and F(-) is
convex and equal to f(-). Consequently, for almost every S, (1) the outsiders’

'* Note that the converse need not be true, since M(t) being a singleton does not imply that
m(t) is.

' Note that this does not imply that f(-) is differentiable. For instance, consider the one
variable function f(S) =S for S>0 and f(S) =252 for S <0 and note that every S is a peak
for /().
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beliefs are a point mass on VF(S), and (ii) F(-) satisfies the following
differential equation:

F(S)=VRS)TUS—-5)—¢[STE,(5+1)—5T5,1]
+ST[$Z,+0.50%,] S. (15)

Proof.  See Appendix A.

To understand Proposition 4.4, it is enough to consider the single
security case. First, to see that F(-) must be convex, suppose, as depicted
in Fig. 1, that it is not. Before continuing, note the geometry of the figure:
If insider-type 7 chooses S to maximize S -7 — F(S), then at the maximizing
demand, S, it must be the case that e dF(S); ie., the line with slope 7
through the point (S, F(S)) must be tangent to F(-) at S (see the figure).
With this in mind, insider-type t =0 will, according to Fig. 1, choose either
S, or S,. Moreover, no insider-type chooses Se (S, ).

Thus, every demand in (S,, S,} is an out-of-equilibrium demand and the
DI criterion restricts the outsiders’ beliefs subsequent to any such demand.
Indeed, according to Proposition 4.3, if Se (S,, S,) then the support of the
outsiders’ beliefs about the insider’s type must be contained in &f(S).
However, Fig.2 shows that df(S)={0}; ie, f(-) is differentiable on
(Sy, S,) with derivative zero there. Consequently, if any demand
Se(S,, S,) is made, the outsiders will believe with certainty that the
insider is type 7=0. Hence, each outsider’s first-order condition (they
choose S7) subsequent to such a demand is U-0—P(S)—~¢X,S*=0,
which implies, since [ S* dv=1—§ in equilibrium, that P(S)=¢X(§—1)
for all Se(S,, S,).

However, this leads to a contradiction. For if P(S)=¢2(S—1) on
(So, S,), then F(S)=(S—S)"P(S)+0.5087%,S is strictly convex on
(Sy, S;) which, according to Fig. 1, it is not.

FIGURE 1
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Note that we have actually established that F(-) must be strictly convex,
so that every S i1s a peak. It also follows that F(.)=f(-) since the
greatest convex function below F(:) (now known to be convex) is F(-)
itself.

Finally, that F(-) satisfies the stated differential equation can be derived
from equilibrium considerations as follows. Together, Proposition 4.3;
f(-)=F(-); and the almost everywhere differentiability of convex functions,
imply that for almost every S, the outsiders’ beliefs must be a point
mass on VF(S). Each outsider’s first-order condition is then
UVF(S)—P(S)— ¢2,5% =0, for almost every S, the insider’s demand, and
where S* is outsider «’s subsequent demand. Since, in equilibrium,
[oS*dv=1—~S this implies P(S)=UVF(S)—¢Z(1—S), for almost
every S. The differential equation results by substitution into F(S)=
(S—S5)"P(S)+0.5057X, S, the definition of F(-).

In order to show that the eigenvalue condition characterizes the exist-
ence of an equilibrium in securities {1, 2, .., n}, a final step remains. Recall
that because we are in equilibrium,

V(t)=max STt — F(S)
S

must we well-defined for every insider-type 1. Clearly, a necessary condition
for this is that

F(8)— +x as IS — + . (16)

For if {S"}7 | violates (16) then the insider’s maximization problem
has no solution for insider-type t*, an appropriate limit point of
{S"/115”) } 7. ,. The final step shows that if an equilibrium exists, so that in
particular (16) must be satisfied, then in order to satisfy (16), every eigen-

value of U must be less then 1/2.

S 3 S

FIGURE 2
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So suppose that there is an equilibrium in securities {1,2,..,n}. By
Proposition 4.4,

F(S)=VF(S)T U(S—8)—¢[STZo(5+1)-572,1]
+ST[¢Z,+0.5%,] S, (17)

for almost every S.

By Lemmas A.1 and A2 of Appendix A, U can be written as
U=1I""ATI, where A is a diagonal matrix, whose diagonal elements consist
of the eigenvalues, A,e(0,1), of U. Let x=I(§—-35) A=
(I )T [¢Zo+05Z,1T ', b=I""[$Z(5—1)+0%,5], and d=
0.5057%, 5. Also, define H: R"— R by H(x)=F(I" 'x+S5). Hence, (17)
becomes

H(x)=VH(x)" Ax+bp"x+xTAx +d (18)

for almost every x. Note that H inherits, from F, convexity.

Next define for each x, g:(0,00)—=R by g(t)=H(x,t", .., x,t').
Because H is convex, it 1s also differentiable for almost every x. Therefore,
for almost every x with | x|l =1 (n —1 dimensional Lebesgue measure), g
is differentiable for almost every 7> 0. Fix then x* such that |x*|| =1, no
component of x* is zero, and g(t)=h(x*t", .., x*t*) is differentiable for
almost every 1> 0. Consequently, by (18),

1g'(1)=g(t)— Y bx}¥th=Y xFa;x} "+ —d (19)
i=1 i

for almost every ¢t > 0. Now, since H is convex, it is Lipshitz. Therefore, for

every >0, g is Lipshitz on [«a, oc) and it can therefore be recovered from

its derivative (where defined). Hence we may solve the differential equation

(19), to conclude that g must be of the form

gy=ct—=Y bxX2,—1) "= Y xFa;xXA,+A—1)" 1ty
i=1 i
).,+).,,;é1

— Z xrazx¥tInt—d, (20)
).,+‘;lj,:1

for t >0, and some constant c.
Now let 4,, denote the largest eigenvalue of U. If 4,,=1/2, then from
(20) the leading term of g(¢) is

—{ Y x,-*a,-,-x,*}tln 1,
it Ai=05
Fia;=05

642 65 1-11
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whereas if 4,,> 1/2 the leading term is

_{ Z xl*al_'/'x,l*} (2'2'171 - 1 ) ' [2;-’"'

i1 A= Am

JiA =l

In either case because the terms in curly brackets are strictly positive
(recall that A is positive definite and no component of x* is zero),
we have g(t)— —oo as t—oo. However, this means that
F(I Yx¥™, ., x**)" 4+ §)— — 0 as t — oc, contradicting (16).

Consequently, a necessary condition for the existence of an equilibrium
(linear or otherwise) in securities {1, 2, .., n} is that every ecigenvalue of U
must be less than 1/2. Using this combined with Theorem 4.2, we obtain
the following characterization theorem.

THEOREM 4.5. The following statements hold except possibly for a closed
subset of parameter values having Lebesgue measure zero:. There is an
equilibrium in securities {1,2,...n} if and only if every eigenvalue of the
outsiders’ update matrix, U, is less than 1/2. Furthermore, this is precisely
when a linear equilibrium in these securities exists as well.

5. THE GENERAL CASE

Now that most of the work is done, we remind the reader that our
broader notion of an equilibrium includes not only the agents’ equilibrium
demands, and the equilibrium price schedule, but also the collection of
tradable securities. As we are now aware, under certain conditions there can
be no equilibrium in which all » securities are tradable. So, viewing the
collection of tradable securities as something that is determined in equi-
librium, which has been our point of view from the beginning, it is natural
to now fix the market structure so that only a strict subset, say {1, .., &k},
of the set of n potentially tradable securities is tradable. Note that one can-
not simply replace the n in the previous section with k, because there are
now additional untradable securities (namely, securities &+ 1, ..., n) that
must simply be held by all agents endowed with them. Moreover, the
insider thas private information about the future values of these untradable
securities, values which might be correlated with those of the tradable
securities. Despite these differences, the analysis of this case proceeds along
lines that are very similar to those in the previous two sections. Conse-
quently, we provide only the results.

Let U, =J 2 J,[JN(0°Z, 2,2, +Z,)J, ] " where J (the transpose of
J;) is the kxn matrix (I,0;., ), Ii 1s the kxk identity matrix, and
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Opuin-ty 1s a kx(n—k) matrix of zeros. An equilibrium in securities
{1,2,..,k} is defined analogously to an equilibrium in securities
{1,2,..,n} except that, in addition, each agent must retain his endowed
amounts of securities & + 1 through n.

THEOREM 5.1.  The following statements hold except possibly for a closed
set of parameter values having Lebesgue measure zero. There is an equi-
librium in securities {1,2, ...k} if and only if every eigenvalue 4, ..., i, of
U, is less than 1/2. Furthermore, this is precisely when a linear equilibrium
in securities {1,2, .., k} exists as well.

Note that by simply renumbering the securities, Theorem 5.1 provides a
necessary and sufficient condition for the existence of an equilibrium in any
subset of the n potentially tradable securities. Consequently, we are now
able to determine which security markets can open together in equilibrium.
We shall say that a subset of the set of securities constitutes an equilibrium
market structure (or is consistent with equilibrium) if there is an equilibrium
in the given subset of securities.

The theorem to follow indicates that if destructive interference occurs,
then adding still more securities to the market cannot result in an equi-
librium market structure either. For the remainder of this section, we shall
assume that the vector of parameter values (¢, 0, Z,, 2, 2,) is not a
member of the exceptional set described in Theorem 5.1.

THEOREM 5.2. [If securities | through k do not constitute an equilibrium
market structure, then neither do securities 1 through k + 1.

Proof. In view of Theorem 5.1, it suffices to show that the largest eigen-
value of U, ., is at least as large as the largest eigenvalue of U,. We recall
Rayleigh’s principle (see Strang [25, pp. 253-254]) which states that if 4
is a symmetric » x # matrix, then the largest eigenvalue of 4 is given by

xTAx
max

vem X'x
x#0

Now, if 4 and B are symmetric n x n positive definite matrices, then the
eigenvalues of A(A4 + B) ! coincide with those of QTAQ, where the positive
definite matrix 4+ B is written as (Q ') (Q ') for some nonsingular
matrix Q. Thus, the largest eigenvalue of 4(A4 + B) !, being also the largest
eigenvalue of QTAQ is, by Rayleigh’s principle,
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where the equality follows from the change of variable y = Qx. Hence, the
largest eigenvalue of 4(4 + B) ™' is given by

max 24

reR" _VT(A + B) )’.

¥y#0

So, letting £, denote the largest eigenvalue of U, yields

s xX'IE Jx
L = Max
, xeB XTINE, +0°5,2,5,) X"

}'T‘II\T+IZ£JI<+1)Y
max -3 - 2
veREHD P J/\'+](2‘E+0 Z,,EWZ,])J,\.+1}'

r#0
Yk41=0

TyT
max Y Jk+]2£']k+1y
,l‘Tik(; ! _VTJ/;r-;. 1(24: + 922"}:”"2") Jk +1)

N

= Xk +1+
That is, the largest eigenvalue of U, is nondecreasing in k. Q.E.D.

Theorem 5.2 conforms nicely with our earlier intuition for the existence
of an equilibrium. For suppose there is no equilibrium in securities 1-k.
Then there must be a mutual fund made up of these securities for which the
insider’s trading motive is relatively informational. Since adding a security
does not preclude one from constructing this same mutual fund, adding a
security cannot create an equilibrium where there was none before.

We now provide a condition under which no nonempty subset of the set
of securities is consistent with equilibrium. Thus, the only equilibrium is
the trivial no trade equilibrium in which no securities are tradable. The
following is immediate from Theorem 5.2.

COROLLARY 5.3. If no single security is consistent with equilibrium, then
no nonempty collection of security markets is consistent with equilibrium.
Moreover, this is the case precisely when af‘ / [920:’0,2“, + O’i] 2172 for every
i=1,2,.,n

Corollary 5.3 provides a generalization of the market breakdown condi-
tion in Bhattacharya and Spiegel [6]. Roughly speaking, when at least half
of the insider’s trading activity in every security can be attributed to his
private information, no market nor any subset of markets can open. Next,
we provide a condition under which new securities can be added to the
market so that the resulting market structure is consistent with an equi-
librium.
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For a subset M of {1,2, ... n}, any vector x, and any n x n matrix A,
let x4 =(x,);car» and let 4™ be the | M| x | M| matrix with ijth element a,
for i,je M. Also, denote by U,, the analogue of U, where the labels
11,2, .., k} are replaced by those in M.

COROLLARY 54. Let M and N be two disjoint subsets of the set of
securities {1, 2, ..,n}, and suppose that €,, and €; as well as N, and Wy;
and W, and W , are independent. If both subsets of securities M and N are
consistent with equilibrium, then so is MU N.

Proof. Given the above independence assumptions,

U - oo rzr ey zy 0 !
MeNT Lo oY 0 DIAETREDIAD D

and so the eigenvalues of Uy, , » are simply the union of the eigenvalues of
U,, and U,. Therefore each of these eigenvalues is less than 1/2. The result
now follows from Theorem 5.1. Q.E.D.

Thus, introducing new securities into the market whose future values are
independent of those of the current collection of tradable securities does
not result in destructive interference. The next corollary turns to the
opposite extreme and shows that sufficient correlation between a collection
of securities’ future values precludes the existence of an equilibrium in this
collection. Indeed, it shows somewhat more.

COROLLARY 5.5. If JUO?Z X, 5,)J, is close enough to a singular
matrix, then securities {1,2, ...k} do not constitute an equilibrium market
Structure.

Proof. Let {A,} be a sequence of nxn symmetric, positive definite
matrices converging to A, where J [ AJ, is singular. Let 4,, denote the k x k
diagonal matrix of eigenvalues of J/X . J,[(JJ(4,+Z.)J)] ", a kxk
diagonalizable matrix (see Lemma A.1 of Appendix A). Since the eigen-
values of a matrix are continuous in its entries (see, for instance, Horn and
Johnson [16, p.539]), A4,, converges to A the k x k diagonal matrix of
eigenvalues of JJX J,[(JI(4+X,)J,)] ', which has an eigenvalue
greater than 1/2 since its inverse [JSAJ, J[J[Z.J,] '+, has an eigen-
value of 1. Hence, for m large enough, J[ X, J, [(J(4,,+ Z,) J.)] ! has an
eigenvalue larger than 1/2. Therefore, if J[(0°2, X, X,) J, is close enough
to a singular matrix, then U, has an eigenvalue exceeding 1/2. Now, apply
Theorem 5.1. Q.ED.
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One interpretation of the above result is that futures or options markets
can potentially eliminate the markets in the underlying securities. To see
this, allow £ to represent near term events about which the insider has
private information. To the extent that there are some near term events
that have a differential impact upon the future and the stock return (for
example, a large earnings announcement that results in a one time dividend
bonus) the matrix X', will likely be well conditioned. Allow 1 to represent
long term events about which no one knows a great deal. Now, long term
events that are realized after trade may well affect both the stock price and
its corresponding futures price about equally. Consequently, X, may be
nearly singular. If %, is near enough to a singular matrix, Coroliary 5.5
implies that there can be no equilibrium in which the futures market
is also present. Thus, introducing the futures market may induce a per-
sistent inability of the market-maker in the underlying securities to clear
the market. Consequently, the present model provides a mechanism
through which the introduction of a futures market may cause the
market in the underlying securities to break down. In our terminology,
futures markets can destructively interfere with markets in the underlying
securities.

Numerical examples of destructive interference abound. We now provide
one. Consider an economy with only two potentially tradeable securities
(n=2) and covariance matrices

1.0 06 100 0 20 0
Z = E = N 2 = .
" [0.6 1.0]’ W [ 0 100] ¢ [0 20]

If either security is the only one that is tradeable, the largest (and only)
eigenvalue of the insider’s update matrix is 0.128. Since this is less than 1/2,
there is an equilibrium in which security 1 trades alone and an equilibrium
in which security 2 trades alone. However, if both securities are tradable,
the largest eigenvalue of the insider’s update matrix is 0.556. Hence, by
Theorem 4.5, there is no equilibrium in which both securities 1 and 2 are
tradable. In particular, then, if security 1 is currently trading, the introduc-
tion of security 2 may result in the elimination of security 1.

A question that arises in any multi-security economy is whether Giffen
securities (that is, a security whose demand increases with its price) can
arise. As in Admati [2], we find that they can. In the context of our model,
a security is Giffen if the outsiders’ aggregate demand for it is increasing in
its price. This is the natural definition since the outsiders are price-takers.
However, since, in equilibrium, the outsiders’ aggregate excess demands
must equal the insider’s supply, it suffices to find a security such that the
insider’s demand for it is negatively related to its price. The following
example illustrates this possibility.



DESTRUCTIVE INTERFERENCE 161

GI1FFEN SECURITY EXAMPLE. Supposc that there are only two securities
and that they both trade. Let

40 19 11 22 6 20
S = J = =
¢ |:19 10]’ " [22 70]’ 2 [20 100:|’
0=2, and ¢ = 0.0001.

Consequently, the outsiders’ update matrix, U, has a largest eigenvalue
slightly less than 0.2, so that a linear equilibrium exists. Solving (13) for the
linear equilibrium produces

(gf>~"_ —005 174
8s) | =754 16174

Thus, security 1 is Giffen.

6. CONCLUSION

The model presented in this paper facilitates the study of a phenomenon
particular to imperfectly competitive multi-security markets: destructive
interference. In contrast to competitive settings, adding securities to a
system here does not always foster additional trade. A new security may
destructively interfere with one or more securities already present. It is
therefore possible, for instance, that the birth of a futures market might
eliminate the market in the underlying securities. Or, a firm may ultimately
be unable to issue a new security if it has already issued a similar security
in the past; it may be able to issue one combined security for all its divi-
sions, but not separate securities for its different divisions.

The possibility of destructive interference suggests that equilibrium in the
presence of insider trading is a delicate matter. The nature of the equi-
librium collection of trading securities can be dramatically altered by the
addition of a single new security. The extent to which these issues arise
when there are many insiders, rather than just one, is a question which
awaits future work.

APPENDIX A

LEMMA A.l. If A and B are real, symmetric nx n matrices and B is
positive definite, then AB is diagonalizable, its eigenvalues and eigenvectors
are real, and it has a real diagonalizing matrix.
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Proof. Let 2 be an eigenvalue of 4B and x a corresponding eigenvector.
Then ABx = Ax. Since B is real, symmetric, and positive definite, B= WTW
for some real nxn nonsingular matrix W (see Strang [25, Thm. 6c,
p. 2411). So, letting y = Wx we have WAW Ty =iy. However, WTAW is
then real and symmetric. Hence, WTAW has n linearly independent
(indeed, mutually orthogonal) real eigenvectors y,, ..., ¥, corresponding to

its n (not necessarily distinct) real eigenvalues 4,, ..., 4,. However, 4,, .., 4,
are then the » (real) eigenvalues of 4B, and x,=W 'y, ., x,= W'y,
are corresponding (real) eigenvectors. Since W' is of full rank, x,, .., x,
are linearly independent. Hence, the real n x » nonsingular matrix whose
ith column is x; diagonalizes AB. Q.E.D.

LEMMA A.2. If A and B are nxn symmetric positive definite matrices,
then the eigenvalues of A(A+ B) ' lie strictly between 0 and 1.

Proof. Let A be an cigenvalue of A(4 + B) ! and x be a corresponding
eigenvector. Then A(4+ B)~' x=Ax, so letting y=(A4+ B)~'x yields
Ay = A(A+ B) y. However, this means that i=yTA4y/y7(4 + B) y which is
well defined (since y #0 and 4 and B are positive definite) and lies strictly
between 0 and 1. Q.E.D.

Given two m x n matrices A and B, the Hadamard product of 4 and B,
denoted A*B is the m x n matrix whose ijth entry is a;b; (that is, matrices
are *-multiplied by multiplying corresponding entries).

LEMMA A.3. Suppose that A and B are nxn, symmetric matrices and
that A is positive definite and B is positive semidefinite. Then A*B is positive
definite if and only if B has no diagonal entry equal to 0.

Proof. See Horn and Johnson [16, Thm. 5.2.17].

LEMMA 4.1. Except possibly for a closed set of parameter values having
Lebesgue measure zero, there is a solution, A, to (14) which is nonsingular
and which renders both sides of (14) positive definite, if and only if every
eigenvalue of U is less than 1/2.

Proof. We first show that (14) possesses a solution, A, satisfying the
positive definiteness requirement if and only if every eigenvalue of U is less
than 1/2. We then inquire as to when this solution is, in addition, non-
singular.

We begin by diagonalizing U. That U can be diagonalized follows from
its definition and Lemma A.1. Write U as /"~ 'Al", where 4 is an nxn
diagonal matrix whose real diagonal entries are the eigenvalues 4, .., 4,
of U. By Lemma A.2, each 4, lies strictly between zero and one. Now let
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B=TAI'" , E=¢I'2,I'", and F=0rX,I'". Premultiplying (14) by /" and
postmultiplying by I'T yields
B+B "+ F=A Y(B—-E). (A.1)
Let H denote the matrix B+ BT + F and h, its ijth element. Since I is of
full rank it suffices to show that (A.1) has a solution, B, such that H =
B+ B" + F is rendered positive definite, if and only if each diagonal entry
4;of A is less than 1/2.
So, suppose that a solution, B, to (A.1) exists and that H is positive
definite. We wish to show that each A, <1/2. Letting lower case letters

represent elements of the corresponding matrices in (A.1) yields for every
Lj=1,..,n

1
by+b;+ ij:;t_(b::/_eu)- (A2)

Then also, recalling that £ and F are symmetric,
bi+b, +f,-j=/1lf (b—ey). (A3)
Now, putting /= yields (24,— 1) b, = — (4, f;+e,) <0, since £ and F are
positive definite, and 2;€ (0, 1). Therefore 4,+# 1/2, and so
bi=(1-24,)" (A, fi+e;). (A4)
Recalling that H= B+ BT + F, we then have
hy=(1—24;)"" (2e;+f:). (A.S)

Since the diagonal elements of H, given by (A.5), must be positive if H is
to be positive definite, each 4, must be less than 1/2.

We now show the converse, namely, that if each 4, is less than 1/2, then
(A.1) possesses a solution, B, and it renders H positive definite. Note first
that when 4; < 1/2 for each i, (A.2) and (A.3) together determine B. Indeed,

by= (1= —A)  [(1+ A= 4) ey+ i fy]. (A.6)
Since H= B+ B" + F, we then have
hy= (1= 2= )" Qe+, (A7)

In view of Lemma A.3, Eq. (A.7), and noting that E and F are positive
definite, H will be positive definite if the matrix whose ijth entry is
(1—4;,—4,) ', is positive semidefinite. (Note that no diagonal entry is 0.)

642 65 1-12
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That this is indeed the case when each 4,e (0, 1/2) is established by noting
that

(1= dy— i) = [0 =21 = A) = 4,4,

—ta-an - -2 ]

=[(1_'1i)(1_/l/)]wl l+[‘_;:|[ L

A DRI I N ]
=4 [1—4] :

where the infinite series converges since A,€(0,1/2) implies that
/(1= 2,)€e(0,1). Hence, (1 —4,—4;) 'is the (convergent) sum of terms
of the form «,a,, However, every nxn matrix having ijth entry a,x; is
positive semidefinite. Consequently, the matrix ((1—4;,—4;) ") is the (con-
vergent) sum of positive semidefinite matrices and is therefore positive
semidefinite.

We have therefore proven the following. If Eq. (14) possesses a solution,
A, which renders both sides of (14) positive definite, then every eigenvalue
of U must be less than 1/2. Hence, the same conclusion holds a fortiori if,
in addition, the solution, A, is nonsingular. Conversely, if every eigenvalue
of U is less than 1/2, then (14) possesses a solution, A (indeed, the solution
is unique), and this solution renders both sides of (14) positive definite.

To complete the proof of the lemma, it suffices to show that among the
open and nonempty set of parameter values for which the eigenvalues of U
are all less than 1/2, the solution, A, to (14) is nonsingular for all but a
closed subset having Lebesgue measure zero. Indeed, since the solution, B,
to (A.1) satisfies B=I'AI'" where I" is nonsingular, it suffices to establish
the following claim.

CLAIM.  Restrict attention to the open and nonempty set of parameter
values 0, ¢, 2, Xy, X, such that all eigenvalues of U are less than 1/2. Then
except possibly for a closed subset of parameter values having Lebesgue
measure zero, the solution, B, to (A.l) (which exists and is unique because
the eigenvalues of U are less than 1/2) is nonsingular.

Proof of the Claim. The closedness result follows immediately from the
fact that the solution, B, to (A.1) is continuous in the parameters when
each cigenvalue is less than 1/2. The measure zero result follows because,
as is evident from (A.6), B can be written as V + ¢W, where V and W
depend only upon 6, X,, 2y, and 2, but not ¢. Consequently, for each
choice of 0, X, 2, and 2, B is singular for at most finitely many values
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of ¢, namely, those that are zeros of the nondegenerate polynomial (in ¢)
det(V + ¢ W). To see that it is nondegenerate (i.e., not identically equal to
0), it suffices to show that ¥ is nonsingular. But this follows because
the jjth entry of V is, from (A.6), A,(1—2,—4) 'f,. Letting f}=
(1—4,— %) "' f,; implies F* is positive definite. (Recall F is positive
definite, and the matrix [(1—4,—4;)~'] is positive semi-definite with no
row or column of zeros. Then apply Lemma A.3.) Consequently, V= AF*
so that V- '=F*"14°1

This completes the proof of the claim and the lemma. Q.E.D.

The remainder of Appendix A is dedicated to the proof of Proposi-
tion 4.4. It relies on a number of lemmas, and we begin with these.

LEmMMAa A4 If S, is a peak, then S, is the unique utility maximizing
demand for every insider-type in 11 3f(S,).

Proof. Because S, is a peak, m(t*)= [S,} for some insider type t*.
Hence,

STt*—f(So)>STt*—f(S),  VS#S,.

Furthermore, by Fact (d)(ii) of Appendix B, t* e df(.S,). Now since 7,€
11 &f(Sy) one may write it as ty=a1* + (1 —a) 7, for some xe (0, 1] and
some 1 € f(S,). Consequently,

Soto—F(So) = 8370 —/(So),
=a[Sgr* ~ f(Se)]+ (1 —2)[ STt —1(S,)]
>a[STe* —f(S) ]+ (1 —a)[ STt —£(S5)] VS #S,,
=8T1,—f(S)= ST, — F(S),

where the first equality follows from Fact (c)(ii) of Appendix B, from which
one concludes that: m(z*)={S,} implies F(S,)=/(S,). The inequality
then derives from Fact (d)(ii) of Appendix B, and m(t*)={S,}. Finally,
the last equality follows since by Fact (b) of Appendix B, f(s)< F(S).

Q.E.D.

Define /(S)=U"'[P(S)+¢Z4(1 —S)] for every S. Consequently,
Uh(S)—P(S)—¢2,(1 —S5)=0 for every S, and A(S) has the following
interpretation. The vector A(S) is the point belief about the insider’s type
that would render 1—.S a utility maximizing demand by each outsider
subsequent to observing the insider demand S. Note that A(-) is simply a
convenient technical device. We do not require the outsiders to form point
beliefs.
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In what follows, f{S) denotes the outsiders’ beliefs (probability measure)
about the insider’s type conditional on the insider’s demand, S. To simplify
the notation, we write only f rather than S(S).

LeMMa A.5.  The vector h(S) is an element of the convex hull of 3(S).
Indeed,

_Jus T (1=, S, 1) Bldr)
Vs W1 =S, 5, 17) Bldr)

where Y(z, S, t)=exp{ —¢[z"Ut —P(S)" z - §—-0.5¢z72,z]}.

h(S) (A.8)

Proof. From the well known properties of the exponential utility func-
tion and the normal distribution, conditional on any 7, and any demands,
z, by the outsider, and S by the insider, one can write the outsider’s utility
as Y(z, S, 1)=exp{ —g[z" Ut —P(S)T 2 — §—0.5¢z72,z]}. The outsider’s
demand must therefore maximize, over z, the function |45, ¥(z, S, 1) p(dr).
The resulting first-order condition is

f [Ut —P(S) = Zoz] (1S, S, 1) fdr) = 0.
3(S)

Using the definition of A(S) to substitute out P(S) and rearranging proves
(A.8). That A(S) is in the convex hull of 3(S) then follows from the
Corollary to Theorem 3 of Hildenbrand [17, p. 62]. Q.ED.

LEMMA A.6. If S, is a peak, then h(S,)eri df(S,).

Proof. 1If S, is a peak, then by Lemma A4, and Bayes’ rule 3(S,)2
ri ¢f(S,). But, since 3(S,) is closed and by virtue of Proposition 4.3, one
then has 3(S,) = af(S,).

Together with the previous lemma, this yields
faf(so) (1 —S8g, S, T) B(dr)
jo/(so; Yl —So, So, 7) Bldr) .

Since df(S,) is convex, and the outsiders’ prior belief (i.e., before observing
So) is normal, the measure u defined by

_ jA ~ O (Sp) Y1 — 8o, So, 7) Bldr)
Sﬁj’(So) Y1 =S, So, 1) Bldr)
for every measurable subset A, gives full measure to ri &f(S,). Hence,

h(So) = forisy Tildr) = fn s Ti(dT) so that by the Corollary to Theorem 3
of Hildenbrand [17, p. 62], h(Sy) e ri f(S,). Q.ED.

h(S,) =

u(A)
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Lemma A7, If g:R"—> R is convex, and q° is an extreme point of
ég(x,), then there is a sequence x,, — x, such that Vg(x,,)=q,, — q°.

Proof. In the course of proving his Theorem 25.6, Rockafellar [24,
p. 246] shows that every exposed point of dg(x,) is the limit of derivatives,
4,,=Veg(x,), with x, converging to x,. Combined with Straszewicz’s
Theorem (Rockafellar [24, p. 167]), which says that the set of exposed
points of a closed convex set C is dense in the set of extreme points of C,
the proof is complete. Q.E.D.

LemMma AS8. If' S, is a peak, then
tTU(S,— S)=h(S,)" U(S,— S), Ve df(S,)

Proof. Choose any t,eri Jf(S,). By Lemma A4, V(to) = SJto— F(Sp)
=S5,70—(Se—5)" P(S,)— 050572, S,. So, by the definition of A(S,),
V(tg) = Sgto — (S — S)T [UMS,) — ¢2o(1 — Sp)]1 — 0.505.%,S,. By
Lemma A.7, for any t° extreme in Jf(S,), there is a sequence S,, — S,, such
that V/(S,)=1,,— 1% Therefore, by Proposition4.3 and Lemma A.5,
hS,)=rt, for all m. Consequently, since V(t9)=Srty—(S,—S5)"
[UA(s,,) — ¢Zo(1 —S,,)1—050S X, S, we obtain upon taking the limit
as m— =, that A(Sy)" U(Sy—S8) < (°)T U(S, — S), for all z° extreme in
&f(So). However, by Lemma A.6 h(S,) e ri &f(S,). Hence, h(S,)T U(S, —S)
=1TU(8,—8) for all tedf(S,). Q.E.D.

PROPOSITION 4.4. In any equilibrium, every S is a peak, and F(-) is con-
vex and equal to f(-). Consequently, for almost every S, (i) the outsiders’
beliefs are a point mass on VF(S), and (it) F(-) satisfies the following
differential equation:

F(S)=VF(S)TUS—8)—¢[ST&y(S§+1)=875,1]
+ST[¢Z,+050%,1S. (A9)

Proof. We first show that for every 14, éV(1,) is a singleton. So suppose
by way of contradiction, that dV(7,) contains two distinct points, S* and
SP Let S**=a8*4 (1 —a) SP, t* =Ah(S*®), and choose e (0, 1) so that
52 £ 5 By Proposition 4.3 and Lemma A.5, t* e df(5*?). Since by Fact
{(d) of Appendix B both S? and S® maximize STt~ f(S), f must be linear
on the line segment joining them. Fact (d)(ii) of Appendix B implies that
S** maximizes STt* —f(S). Consequently, the linearity of / on the line
segment joining S* and S° implies that both S* and S" maximize
STt* — f(S). Hence, 5* and S® are contained in d¥(*), by Facts (d)(i)
and (d)(i1) of Appendix B.
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Since éV(t*) is compact and convex, the point $°°, which is not extreme
in ¢V (t*), can be written as a strict convex combination of distinct extreme
points of &V (t*), say S',..,S*. By Lemma A.7, there exist sequences
{z! y=_, for every i=1, .., k such that t/ - t* and VV(z|)=S - §
for all i. So by Fact (d) of Appendix B, S’ is a peak and 1/ e df(S!)) for
all i and m.

Let Q(S)=¢(S—8)" Zo(1—-5)—0.508"2, S for every S. Since ¢Z,
and 62, are positive definite, Q is strictly concave. For every i=1, ..,k
we have, by Fact (d)(ii) of Appendix B, that V(t!)=(S. )" 1! —f(5.).
However, because S’ is a peak, Fact (c) of Appendix B then implies that
V(ti )= (S )T 7/, — F(S' ). Using now both the definition of F(-) and A(-)
to solve for P(-) yields

Vit!

N]) = (S"H)T t:ﬂ - h(S:N)T U(S;"

—8)+Q(S),)
By Lemma A8, one can rewrite the right-hand side to obtain
V(ch,) = (Si,)" o, — (z),)T U(S!, — 5) + Q(S),)
- (ST v* — ()T U(S'— 5) + O(S").

However, V(t’ )— V(t*) since V(-) is continuous. Hence,

V(t*)=(S) T t*— (5T US = 8)+ Q(S'),  Vi=1, ..k
<(S*™)T1* — (t*)" U(S** - 8)+ Q(S*)
— (Sab)T ¥ — F(sab),

where the inequality follows since S*" is a strict convex combination of the
distinct S”s, and Q(-) is strictly concave; and where the second equality
follows by virtue of A(S**)=1* and the definitions of F(-) and A(-).
However, this contradicts the definition of V(1*). Therefore, ¢V(t) is a
singleton for every 1.

We now show that F(S)=f(S), so that by Fact (b) of Appendix B, F(-)
is convex. Choose any S, and tedf(S). Then by Fact (d) of Appendix B,
SedV(t)=m(t). However, ¢V(1) is a singleton, so that {S} =m(z). Conse-
quently, by Fact (c) of Appendix B, {S} =m(t)=M(z) and F(S)=£(S).

Next we show that every S is a peak. Choose any S°, and any 1, € df(S,).
Then by Fact (d)(ii) of Appendix B, S, e m(t,). However, this then implies
that M(t,) =m(1,) = {S,}. Hence, S, is a peak.

Being convex, f (and hence F) is differentiable almost everywhere
{Rockafellar [24, Thm. 25.5]) so that by Proposition 4.3, the outsiders’
beliefs conditional on S are a point mass on VF(S) for almost every S.
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Finally, we must derive the differential equation. This has already been
explained in the main text in the discussion following the statement of
Proposition 4.4. Q.E.D.

APPENDIX B

The following is a list of facts that are referred to in the text, all of which
are taken from Rockafellar [24], denoted [R].

Facts (a) V() is convex. ([R] Corollary 12.1.1, p. 103.)

(b) f(-) is well defined, convex and f(S)<F(S) for all S. ([R]
Theorem 12.2, p. 104.)

(c) If SeM(r), then (i) Sem(t) and (i) f(s)=F(S). ([R]
Theorem 12.2, p. 104.) Consequently, for all T

V(t)=max STt — F(S)=max STt — f(s).

(d) (i) m(t)=2CV(z) for every t.
(i) Sem(z) if and only if 1€ 0f(S). ([R] Theorem 23.5, p. 218.)
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